近年來(lái), 鈣鈦礦太陽(yáng)能電池(PSC) 因其光電轉(zhuǎn)換效率和低成本, 迅速成為下一代太陽(yáng)能電池技術(shù)的研究熱點(diǎn)。 然而, 鈣鈦礦材料本身存在的界面缺陷、 載流子復(fù)合以及環(huán)境穩(wěn)定性等問(wèn)題, 一直是阻礙鈣鈦礦太陽(yáng)能電池走向?qū)嵱没闹饕系K。
為了解決這些問(wèn)題, 科學(xué)家們一直在努力尋找新方法, 其中, 改善器件的界面, 減少非輻射復(fù)合損失, 提升電池的穩(wěn)定性和效率, 成為了一個(gè)重要的研究方向。 鈣鈦礦太陽(yáng)能電池的結(jié)構(gòu)主要分為兩種: 正式結(jié)構(gòu) (n-i-p 結(jié)構(gòu)) 和反式結(jié)構(gòu) (p-i-n 結(jié)構(gòu)), 兩種結(jié)構(gòu)在材料組成、 加工工藝、 光電性能、 穩(wěn)定性和應(yīng)用場(chǎng)景等方面各有優(yōu)劣:
l 結(jié)構(gòu)
2 n-i-p 結(jié)構(gòu): 這種結(jié)構(gòu)的鈣鈦礦太陽(yáng)能電池采用電子傳輸層 (ETL) 作為底層, 鈣鈦礦活性層位于中間, 空穴傳輸層 (HTL) 在頂層。 n-i-p 結(jié)構(gòu)的典型材料組合是 TiO2 作為電子傳輸層, Spiro-OMeTAD 作為空穴傳輸層。
2 p-i-n 結(jié)構(gòu): 這種反式結(jié)構(gòu)則是以空穴傳輸層 (HTL) 作為底層, 鈣鈦礦活性層在中間, 電子傳輸層 (ETL) 在頂層。 p-i-n 結(jié)構(gòu)通常采用 PEDOT 作為空穴傳輸層, PCBM 或 C60 作為電子傳輸層。
l 加工工藝
2 n-i-p 結(jié)構(gòu): 通常需要高溫?zé)Y(jié)過(guò)程, 特別是 TiO2 電子傳輸層的制備需要高溫處理, 這可能限制了其應(yīng)用范圍。
2 p-i-n 結(jié)構(gòu): 通??梢栽诘蜏叵录庸?, 適合制備在柔性基底上, 更加適用于大規(guī)模生產(chǎn)和應(yīng)用。
l 光電性能
2 n-i-p 結(jié)構(gòu): 由于其電子傳輸層和空穴傳輸層材料的選擇, 通常具有較高的光電轉(zhuǎn)換效率, 但可能存在較大的遲滯現(xiàn)象。
2 p-i-n 結(jié)構(gòu): 在減少遲滯現(xiàn)象方面表現(xiàn)更好, 且在優(yōu)化后, 其光電轉(zhuǎn)換效率也可以非常高。
l 穩(wěn)定性
2 n-i-p 結(jié)構(gòu): 可能由于電子傳輸層材料在高溫條件下的穩(wěn)定性, 長(zhǎng)期穩(wěn)定性相對(duì)較好。
2 p-i-n 結(jié)構(gòu): 通過(guò)優(yōu)化材料和界面, 可以實(shí)現(xiàn)較好的長(zhǎng)期穩(wěn)定性, 并且在低溫制備條件下, 有助于減少材料的降解。
l 應(yīng)用場(chǎng)景
2 n-i-p 結(jié)構(gòu): 由于其需要高溫處理, 通常應(yīng)用于剛性基底和傳統(tǒng)光伏領(lǐng)域。
2 p-i-n 結(jié)構(gòu): 適用于柔性電子、 可穿戴設(shè)備和建筑一體化等新興領(lǐng)域。
近期, 林雪平大學(xué)物理、 化學(xué)和生物系高峰教授團(tuán)隊(duì)聯(lián)合華東師范大學(xué)保秦?zé)罱淌趫F(tuán)隊(duì)以及吉林大學(xué)張立軍教授團(tuán)隊(duì)** 在 Nature Communications 雜志上發(fā)表了一篇重要研究成果。 該研究團(tuán)隊(duì)通過(guò)將 4-甲氧基苯基膦酸 (MPA) 和 2-苯乙基碘化銨 (PEAI) 兩種功能性分子結(jié)合, 共同作用于鈣鈦礦材料的界面, 構(gòu)建了一個(gè) “協(xié)同雙分子界面” (SBI) 結(jié)構(gòu), 顯著提升了鈣鈦礦太陽(yáng)能電池的效率和穩(wěn)定性。
【協(xié)同雙分子界面 (SBI) 的妙用: 助力鈣鈦礦太陽(yáng)能電池效率提升與穩(wěn)定性增強(qiáng)】
l 精準(zhǔn)調(diào)控: 該研究團(tuán)隊(duì)使用了一種全新的協(xié)同雙分子界面 (SBI) 工程策略, 通過(guò) MPA 和 PEAI 兩種分子的協(xié)同作用, 來(lái)優(yōu)化鈣鈦礦太陽(yáng)能電池的界面特性。
l 協(xié)同機(jī)制:
2 MPA 分子 通過(guò)與鈣鈦礦材料表面形成牢固的 P-O-Pb 共價(jià)鍵, 有效減少表面缺陷的密度, 同時(shí)將表面費(fèi)米能級(jí)向上移動(dòng), 從而抑制了載流子的復(fù)合。
2 PEAI 分子 在鈣鈦礦材料表面形成負(fù)偶極層, 進(jìn)一步提高鈣鈦礦的 n 型特性, 促進(jìn)電子從界面高效提取。
這種協(xié)同的表面改性策略不僅通過(guò)增強(qiáng)缺陷鈍化, 同時(shí)也改善了鈣鈦礦太陽(yáng)能電池的能量級(jí), 顯著降低了界面非輻射復(fù)合率。
【效率與穩(wěn)定性顯著提升: 未來(lái)可期】
SBI 結(jié)構(gòu)改性后的反式鈣鈦礦太陽(yáng)能電池, 實(shí)現(xiàn)了高效率。 在標(biāo)準(zhǔn)測(cè)試條件下, 該器件的穩(wěn)定狀態(tài)光電轉(zhuǎn)換效率達(dá)到了驚人的 25.53%, 并獲得了 25.05% 的認(rèn)證效率。 同時(shí), 該器件展現(xiàn)了優(yōu)異的穩(wěn)定性, 未封裝的器件在 60% 的相對(duì)濕度下, 放置在空氣中 1000 小時(shí)后, 仍然保持了 91% 的初始效率, 并在 35°C 條件下進(jìn)行最大功率點(diǎn)跟蹤測(cè)試(MPP)500 小時(shí)后, 效率依然保持 95%。
為了更精確地研究鈣鈦礦材料的光電轉(zhuǎn)換效率, 該團(tuán)隊(duì)還使用了光焱科技的 QE-R 光伏 / 太陽(yáng)能電池量子效率光學(xué)儀 和 SS-X 系列 AM1.5G A+ 等級(jí)太陽(yáng)光模擬器, 分別用于測(cè)量電池在不同光譜范圍內(nèi)的外量子效率 (EQE) 和模擬真實(shí)陽(yáng)光照射條件。 **
開(kāi)拓新路徑, 推動(dòng)鈣鈦礦太陽(yáng)能電池技術(shù)進(jìn)步
這項(xiàng)研究成果表明, 協(xié)同雙分子界面工程能夠有效地改善鈣鈦礦太陽(yáng)能電池的界面性質(zhì), 進(jìn)而提高電池效率和穩(wěn)定性。 該研究為高性能、 長(zhǎng)壽命鈣鈦礦太陽(yáng)能電池的研發(fā)指明了新的方向。 它不僅在材料科學(xué)領(lǐng)域具有重大意義, 也為鈣鈦礦太陽(yáng)能技術(shù)的商業(yè)化應(yīng)用帶來(lái)了更強(qiáng)大的推動(dòng)力。
林雪平大學(xué)高峰教授團(tuán)隊(duì)利用協(xié)同雙分子界面工程策略, 顯著提升了鈣鈦礦太陽(yáng)能電池的效率和穩(wěn)定性, 并且成功降低了非輻射復(fù)合引起的 Voc 損失, 取得了重大突破。 這一成果將推動(dòng)鈣鈦礦太陽(yáng)能電池技術(shù)朝著更高效率、更穩(wěn)定方向發(fā)展, 為未來(lái)清潔能源的廣泛應(yīng)用開(kāi)辟了新的路徑。
重要技術(shù)參數(shù):
鈣鈦礦太陽(yáng)能電池效率: 25.53%(穩(wěn)定狀態(tài))
穩(wěn)定性: 在空氣中 (60% 濕度) 儲(chǔ)存 1000 小時(shí)后, 保持了 91% 的初始效率; 在 35 °C 條件下進(jìn)行 MPP 跟蹤測(cè)試 500 小時(shí)后, 效率依然保持 95%
關(guān)鍵技術(shù): 協(xié)同雙分子界面 (SBI)
關(guān)鍵設(shè)備: 光焱科技的 QE-R 光伏 / 太陽(yáng)能電池量子效率光學(xué)儀 以及 SS-X 系列 AM1.5G A+ 等級(jí)太陽(yáng)光模擬器
參考文獻(xiàn)
Reducing nonradiative recombination for highly efficient inverted perovskite solar cells via a synergistic bimolecular interface_ Nature Communications 5607 (2024) _ DOI: 10.1038/s41467-024-50019-3
【本研究參數(shù)圖】
Fig 4. a 控制器件、MPA和SBI基器件的J-V曲線(xiàn)。b EQE光譜和集成電流密度。c SBI基器件在最大功率點(diǎn)(MPP)處的穩(wěn)定輸出功率。d 從控制器件、MPA和SBI基器件獲得的Voc和FF統(tǒng)計(jì)數(shù)據(jù)。e 器件在不同電流密度下以發(fā)光二極管(LED)模式運(yùn)行的EQEEL值。f 最近關(guān)于p-i-n PSCs的?Voc, nonrad值報(bào)告。詳細(xì)的g 器件Voc損失分析和h FF損失分析。i 在環(huán)境空氣中以55±5°C老化的未封裝控制器件和SBI基器件的穩(wěn)定性。插圖表示連續(xù)MPP追蹤(在氮?dú)鈿夥罩校?/span>
Fig 3. a PL光譜。b 控制和SBI改性鈣鈦礦薄膜的歸一化TRPL壽命和PLQY。c 具有ETL和不具有ETL的控制和SBI改性鈣鈦礦薄膜的TRPL光譜。比較(d) 控制和(e) SBI改性鈣鈦礦薄膜在具有ETL情況下的fs-TA 2D偽彩色圖。f 具有ETL情況下控制和SBI改性鈣鈦礦薄膜在770 nm的對(duì)應(yīng)GSB衰減。
推薦設(shè)備
1. QE-R_光伏 / 太陽(yáng)能電池量子效率測(cè)量解決方案
具有以下特色優(yōu)勢(shì):
高精度: QE-R 系統(tǒng)采用高精度光譜儀和校準(zhǔn)光源,確保 EQE 測(cè)量的準(zhǔn)確性和可靠性。
寬光譜范圍:QE-R 系統(tǒng)的光譜范圍覆蓋紫外到近紅外區(qū)域,適用于各種光伏材料和器件的 EQE 測(cè)量。
快速測(cè)量:QE-R 系統(tǒng)具有快速掃描和數(shù)據(jù)采集功能,能夠高效地進(jìn)行 EQE 光譜測(cè)量。
易于操作:QE-R 系統(tǒng)軟件界面友好,操作簡(jiǎn)單方便,即使是初學(xué)者也能輕松上手。
多功能:QE-R 系統(tǒng)不僅可以進(jìn)行 EQE 測(cè)量,還可以進(jìn)行反射率、透射率等光學(xué)特性的測(cè)量,具有多功能性。
2. SS-X系列_AM1.5G A+級(jí)太陽(yáng)光仿真器
AM1.5G 標(biāo)準(zhǔn)光譜太陽(yáng)光模擬器
A+ 光譜:接近 AM1.5G 標(biāo)準(zhǔn)光譜
A+ 輻照度的時(shí)間不穩(wěn)定性
SS-IRIS:自主研發(fā)技術(shù)自動(dòng)光強(qiáng)操控
適合與手套箱集成的輸出光束方向
IVS-KA6000:IV測(cè)量軟件 所有 SS-X 系列太陽(yáng)光模擬器都可以通過(guò) IVS-KA6000 軟件進(jìn)行控制,該軟件是 IV 測(cè)量軟件,可用于準(zhǔn)確的 PV 表征。不僅是光閘,輸出光輻照度也可以通過(guò) IVS-KA6000 IV 軟件進(jìn)行操控,幫助用戶(hù)輕松完成不同光強(qiáng)下復(fù)雜的 IV 測(cè)試或 Sun- Voc測(cè)試。來(lái)自 IVS-KA6000 的所有 IV 數(shù)據(jù)都可以通過(guò) IVS-KA-Viewer 讀取和分析,這是另一款多功能分析軟件。
KA-Viewer IV 分析軟件 可以大幅縮短用戶(hù)的數(shù)據(jù)處理時(shí)間,并可加快整體工藝改進(jìn)研發(fā)的時(shí)程。
文獻(xiàn)參考自 Nature Communications 5607 (2024) _ DOI: 10.1038/s41467-024-50019-3
本文章為Enlitech光焱科技改寫(xiě) 用于科研學(xué)術(shù)分享 如有任何侵權(quán) 請(qǐng)來(lái)信告知
微信掃一掃